
Estimating the probabilistic susceptibility of an individ-
ual to disease — risk prediction — is central to clinical 
decision-making, especially in the context of early 
disease detection and prevention of common adult-onset 
conditions. Moreover, it can be a powerful tool for 
personal health management when communicated and 
understood effectively. Today, clinical risk prediction 
for common adult-onset diseases often relies on basic 
demographic characteristics, such as age, gender and 
ethnicity; basic health parameters and lifestyle fac-
tors, such as body mass index, smoking status, alcohol 
consumption and physical exercise habits; measure-
ment of clinical risk factors proximal to overt disease 
onset, such as blood pressure levels, blood chemistries 
or biomarkers indicative of ongoing disease processes; 
ascertainment of environmental exposures, such as air 
pollution, heavy metals and other environmental toxins; 
and family history. Routine genetic profiling is conspic-
uously absent from this list, often relegated to use only 
when testing clarifies individual-level risks in the context 
of a known family history for some common adult-onset 
diseases.

Early disease detection, prevention and intervention 
are fundamental goals for advancing human health. 
Meanwhile, genetic risk estimation is, for all intents and 
purposes, the earliest measurable contributor to common 
heritable disease risk. Thus, in theory, genetic profiling 
could be considered a useful component of health man-
agement. Indeed, recent studies suggest that, for a subset of 
diseases, our knowledge of the genetic factors underlying 
these conditions has improved to a point where polygenic 
risk profiling on the basis of calculated polygenic risk scores 
(PRSs) provides personal and clinical utility.

Here, we review the utility of genetic risk profiling 
for common adult-onset polygenic conditions, focusing 
on the leading heritable causes of death in the developed 
world: Alzheimer disease, cancer (breast and prostate), 
coronary artery disease and type 2 diabetes mellitus. For 
these conditions, recent studies have linked polygenic 
risk prediction to actionable outcomes, including the pri-
oritization of preventive interventions and screening1–3, 
prediction of age of disease onset4, benefit from lifestyle 
modifications2,5 and modification of familial disease 
risk leading to changes in clinical decision-making6–8. 
We begin with an overview of the genetic architecture of 
common adult-onset diseases. We then describe how 
genetic risk factors can be combined to produce PRSs 
and review recent studies that have demonstrated the 
utility of PRSs for disease risk stratification as well as 
their implications for early disease detection, preven-
tion, therapeutic intervention and/or life planning. We 
describe some of the limitations of PRSs and the remain-
ing barriers to clinical and personal utility and lay out 
potential future directions for the enhancement of the 
predictive capacity, generalizability and utility of PRSs.

Genetic inheritance of common diseases
The basic components of disease risk are usually broken 
down into genetic susceptibility, environmental expo-
sures and lifestyle factors. The relative contribution of 
genetic susceptibility to the predisposition to disease in a 
population can be quantified by the heritability of the dis-
ease in that population. Heritability itself can be defined 
in several ways9; from a quantitative genetics perspec-
tive — especially as it relates to missing heritability in 
genome-wide association studies (GWAS)10 — it is usually 
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defined as the proportion of phenotypic variation in a 
population that can be explained by genetic variation. 
This definition of heritability is often erroneously inter-
preted to describe how much genetic factors contribute 
to disease occurrence in any single individual.

Heritability explained in a population versus individual  
disease risk. Although heritability is related to the theo-
retical limit of genetic risk stratification at a population 
level11, it does not directly relate to the utility of genetic 
information for an individual12. To illustrate this distinc-
tion further, consider BRCA1 and BRCA2 testing as an 
accepted example of the utility of genetic risk informa-
tion. The prevalence of BRCA1 and BRCA2 mutations at 
birth is <<1% in outbred populations. Thus, at a popula-
tion level, both the heritability explained by and the total 
incidence of breast cancer attributable to BRCA1 and 
BRCA2 mutations are low, accounting for approximately 
5% of all breast cancer cases13,14. Yet, pathogenic BRCA1 
and BRCA2 mutations confer an estimated 65% and 45% 
absolute lifetime risk of developing breast cancer, respec-
tively, in contrast to the 12% absolute lifetime risk in the 
general population15. In other words, although the total 
heritability explained by BRCA1 and BRCA2 variants is 
low, BRCA1 and BRCA2 testing can identify a subset of 
individuals whose absolute risk of disease is significantly 
higher than that of the average individual in the general 
population. These high-risk individuals could benefit 
from a tailored health management strategy, which may 
include intensive screening or more invasive interven-
tions. This distinction between heritability explained in 
a population and risk conveyed to an individual applies 
equivalently to large numbers of genetic variants, which 
cumulatively may not explain a substantial portion of 
heritability but may convey clinically meaningful risk to 
those individuals whose genomes are enriched in risk 
alleles, especially when considered in combination with 
other clinical risk factors.

For some common adult-onset diseases, the poly-
genic risk conveyed to a substantial segment (10–20%) 
of the population whose genomes are enriched in risk 
alleles is comparable to the risk conveyed by com-
monly used clinical risk factors (Fig. 1). The relationship 
between the genetic variants carried by an individual 
and the absolute risk of disease conveyed to that individ-
ual is governed by the underlying genetic architecture 
of the disease of interest, including the number and fre-
quency of genetic variants influencing disease risk, the 
magnitude of the influence of each genetic variant on 
disease predisposition and the prevalence of the disease 
in the general population16,17.

Genetic architecture of common diseases. The under-
lying genetic architecture for most common adult-onset 
diseases has not been fully characterized, although recent 
large-scale genetic studies and advanced analytical tech-
niques can indicate the most plausible architectures16. 
Genetic architecture is often categorized as monogenic 
versus polygenic, meaning that one or many gene per-
turbations contribute to the occurrence of disease in 
an individual, respectively18. For common adult-onset 
diseases, this dichotomous classification is a historical 

artefact derived from the available technology and study 
designs most suited to detect rare high-risk (monogenic; 
via family-based linkage analysis) versus common 
low-risk (polygenic; via GWAS) genetic risk loci.

In reality, the genetic architecture of common 
adult-onset diseases is likely a continuum of common 
low-risk to rare high-risk genetic variants that can act 
cumulatively to drive overall risk in any single individ-
ual19. Regardless, if we consider the contribution of rare 
(minor allele frequency (MAF) <0.5%) high-risk genetic 
variants separately, these variants account for approxi-
mately 1–10% of disease incidence and sometimes result 
in the familial aggregation of disorders, including famil-
ial hypercholesterolaemia for coronary artery disease20, 
DNA repair deficiencies for cancer21, amyloid precursor 
protein processing defects in Alzheimer disease22 and 
maturity-onset diabetes of the young in type 2 diabetes 
mellitus23. As in the BRCA1 and BRCA2 example, genetic 
testing for high-risk variants underlying these disorders, 
often informed by family history, can identify a subset of 
very high-risk individuals who could benefit from acting 
on their genetic risk status if relevant interventions are 
available. For the vast majority of the population without 
evidence of familial disease (nonfamilial), the presence 
of a high-risk variant may be masked owing to inaccu-
rate family history, de novo mutation, small family size 
or sex-specific inheritance; however, often the relevant 
source of genetic risk is derived from more complex 
components of genetic architecture.

Polygenic disease susceptibility. The available evidence 
suggests that the vast majority of the remaining herita-
bility of many common adult-onset diseases is mediated 
by numerous common (MAF >5%) and low-frequency 
(MAF >0.5% and <5%) genetic variants that individ-
ually contribute small effects, most of which can be 
captured through genome-wide genotyping and/or 
imputation24–31. It should be noted that statistical mod-
elling of heritability is an intensely and actively debated 
topic that cannot be fully addressed in this Review; we 
refer readers to the emerging literature29,32–35. Heritability 
estimates reported in this Review relate to the largest 
assessed European ancestry populations and should be 
interpreted with caution. Nevertheless, the results from 
recent large-scale GWAS (>100,000 individuals) and 
sequencing efforts for many common adult-onset dis-
eases continue to expand our knowledge of the number 
of genetic loci associated with disease in a manner that is 
consistent with heritability models that suggest an infin-
itesimal36 or even omnigenic37 model of inheritance. In 
this model, the nonfamilial risk of disease is driven by 
a substantial number of common genetic variants with 
small additive effect sizes (approximate ranges for effect 
sizes (odds ratio) are defined as small: 1.0–1.5, moder-
ate: >1.5, and intermediate: >3.0) in combination with 
a relatively smaller contribution from rare variants of 
moderate effect size in genes known to be associated 
with familial disease.

For example, a recent large-scale comprehensive 
(including imputation) GWAS of coronary artery dis-
ease found that the majority of disease heritability is 
likely explained by common variants with small effect 
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sizes38. Little to no evidence of low-frequency variants 
with moderate or larger effects (odds ratio >1.5) was 
uncovered despite the study being well-powered to 
detect the majority of such associations — imputation 
enables the interrogation of the vast majority of (~90%), 
but not all, low-frequency variants38,39. Similarly, a recent 
large-scale sequencing study of type 2 diabetes mellitus 
found that the frequency spectrum of detected risk loci 
was consistent with a common polygenic disease model 
where the majority of heritability was due to common 
variants of small effects23. Again, little to no evidence 
for low-frequency risk variants with moderate or larger 
effects was uncovered despite being well-powered to 
detect such associations. Meanwhile, enrichment of rare 
variants with moderate effects on type 2 diabetes melli-
tus predisposition was observed within genes known to 
be associated with familial diabetes23. Similarly, a recent 
large-scale comprehensive GWAS for breast cancer 
found that 41% of familial relative risk of breast cancer 
can be explained by genetic variants captured by gen-
otyping and imputation, again with no low-frequency 
variants of moderate effect size detected despite suffi-
cient power to detect such associations40. As for type 2 
diabetes mellitus, rare variants of intermediate effect size 
in genes associated with familial breast cancer are known 
to have an important role in breast cancer predisposi-
tion41. A similar genetic architecture has been observed 

for prostate cancer42–44. Finally, recent studies indicate 
that between ~70% and ~90% of late-onset Alzheimer 
disease heritability may be explained by genetic variants 
captured by genotyping and imputation in GWAS22,45, 
with exome-chip studies finding little evidence for 
low-frequency risk variants with moderate or larger 
effects46. Again, rare variants with moderate effects have 
been identified via sequencing studies focused on fam-
ilies enriched with late-onset Alzheimer disease cases47.

Thus, both projections from statistical modelling 
and empirical results of comprehensive genomic stud-
ies reinforce the conclusion that the genetic architecture 
for many common adult-onset diseases is composed of 
a familial form, responsible for 1–10% of disease inci-
dence, linked to highly penetrant rare variants within a 
small set of genes known to drive familial disease, and  
a nonfamilial form of disease that is mostly driven by an 
amalgamation of common variants of small effect dis-
tributed throughout the genome, in combination with 
a smaller contribution from rare variants of moderate 
effect in genes known to cause familial disease. This 
observed polygenic architecture is consistent with the  
hypothesized genetic architecture that motivated  
the design and pursuit of GWAS — the ‘common disease,  
common variant’ hypothesis48–52 — which posits that 
the genetic variants responsible for most of the dis-
ease risk in the population are shared across members 
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Fig. 1 | Contrasting and combining clinical risk factors and polygenic risk. The relative risk conveyed to individuals via 
commonly measured clinical risk factors (left panel) and polygenic risk estimation (middle panel) for coronary artery 
disease (CAD) is comparable and, when combined, can lead to different action recommendations (right panel). Relative 
risks for commonly measured clinical risk factors (left panel) can vary across populations and are approximated here.  
For polygenic risk (middle panel), the black sigmoidal curve represents the estimated CAD risk relative to average 
polygenic risk (at population incidence) based on 74 genome-wide association study (GWAS)-significant single nucleotide 
polymorphisms (SNPs)38,39. The bars represent the percentile thresholds typically used to define low (<20th percentile), 
medium (20th–80th percentile) and high (>80th percentile) polygenic risk. The combination of clinical and polygenic risk 
estimates (right panel) can lead to combined risk estimates that exceed the appropriate thresholds of risk versus benefit 
that justify certain medical interventions (action threshold). In this example, an individual with estimated clinical risk  
near the action threshold in the absence of polygenic risk information (bottom bar) could clarify their total risk with the 
addition of a polygenic risk estimate to decide against (low polygenic risk) or for (high polygenic risk) taking clinical action. 
PRS, polygenic risk score.
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of the population. The findings to date simply show 
that there are many more variants with much smaller 
effects than were originally anticipated (BOx 1). As any of  
such individual common genetic variant is incapable 
of effectively stratifying disease risk, researchers have 
sought to leverage numerous variants simultaneously 
for risk prediction.

Development of polygenic risk scores
Before reviewing the evidence supporting the utility of 
polygenic risk profiling, we briefly describe the develop-
ment and evaluation of PRSs themselves. For a detailed 
discussion of the considerations for the development 
of PRSs, especially the need for appropriate calibra-
tion of PRSs for clinical use, see the in-depth review by 
Chatterjee et al.53. In brief, a PRS is most commonly cal-
culated as a weighted sum of the number of risk alleles 
carried by an individual, where the risk alleles and their 
weights are defined by the loci and their measured 
effects as detected by genome wide association studies53. 
In some instances, a lower threshold than genome-wide 
statistical significance may be used to improve or esti-
mate total predictability, often at the expense of gen-
eralizability17,25,54. In other instances, models may be 
recalibrated to account for biases in effect size that are 
typically inflated in the discovery cohort, to account for 
multiple linked variants within each disease-associated 
locus, to re-estimate effect sizes for a sub-phenotype of 
interest or to adjust for ethnic or demographic factors 
that may influence the generalizability of models53,55. 
However, the most common approach, which may 

not be optimized for predictive power, is the simple 
approach of summing risks across susceptibility loci as 
reported in the literature. The utility of the PRS is often 
evaluated by determining whether it, in combination 
with clinical risk factors, separates the population into 
categories with sufficiently distinct degrees of absolute 
risk to drive clinical or personal decision-making (Fig. 1).

Historically, the utility of GWAS-based genetic risk 
estimates has been assessed, perhaps inappropriately, on 
the basis of their ability to comprehensively discrimi-
nate between diseased and non-diseased individuals — 
usually quantified by the area under the curve (AUC) 
of a receiver operating characteristic curve, a plot of 
the true positive rate (sensitivity) versus false-positive 
rate (specificity). The AUC is equivalent to the overall 
probability that the predicted risk of an individual with 
disease is higher than the predicted risk of an individ-
ual without disease11,12,53; it provides no information 
regarding the predicted absolute risk conveyed to any 
single or subgroup of individuals. In other words, AUC 
is a population-level metric that is most appropriate for 
a diagnostic test, the primary purpose of which is the 
separation of diseased from non-diseased individuals. 
Yet, the relevant use case for genetic risk information is 
prognosis, a prediction of the likelihood that a certain 
outcome, such as the onset of disease, will occur in each 
individual or subgroup of individuals (Fig. 2).

While the ultimate goal of polygenic risk estimates 
may be the comprehensive stratification of the entire 
population through a complete accounting of each 
individual's genetic susceptibility for disease, the more 

Box 1 | A brief history of GWAS risk profiling

The initial results of genome-wide association studies (GWAS) revealed that prediction of disease risk from GWAS 
findings would not be simple. The history of GWAS findings and the response to those findings have been reviewed 
extensively52,89. Thus, here, we provide a brief summary with a focus on perceptions of the utility of GWAS.

The first large-scale GWAS, published in 2007, with sample sizes on the order of 1,000–5,000 affected individuals, 
identified a handful (1–3) of associated loci for coronary artery disease, type 2 diabetes mellitus, and prostate, breast and 
colorectal cancer, explaining <5% of disease heritability90–94, with the notable exception of Alzheimer disease owing to 
APOE-ε4, which explained a substantial proportion (~5%) of heritability95. The next 5 years would see GWAS sample sizes 
grow to ~10,000s of affected individuals. The number of distinct associated loci per disease grew to the order of tens of 
associated loci per disease, but with these factors explaining only ~10% of the heritability per disease52. The response to 
these findings ranged from disappointment to more visceral condemnation of the pursuit of GWAS52.

In the meantime, direct-to-consumer genetic testing companies, 23andme, Pathway Genomics, deCoDe Genetics and 
Navigenics being the most prominent, were commercializing GWAS findings and returning genetic risk estimates to 
individuals, perhaps prematurely, despite the lack of studies demonstrating the analytical or clinical validity of the tests. 
These personal genetic testing services were met with varied interest from the general public but considerable concern 
from the medical and scientific community regarding the validity, marketing, psychological harm, public health utility 
and unnecessary health-care utilization impact of genetic risk profiling96. These concerns culminated in the uS Food and 
Drug Administration temporarily banning 23andme from the sale of its Personal Genome Service owing to its violation of 
federal marketing guidelines for medical devices97.

Thanks to strategies aimed at improving the statistical power of GWAS, there has been a growing acceptance of their 
validity, at least as an appropriate experimental design for the discovery of genetic risk factors for common disease89.  
The empirical evidence is simply overwhelming. The latest GWAS meta-analyses include >100,000 individuals and have 
begun to explain a more appreciable proportion of disease heritability. For example, ~80 loci explain ~20% of coronary 
artery disease heritability38,39, ~100 loci explain ~20% of type 2 diabetes heritability23,98, ~150 loci explain ~20% of the 
familial relative risk of breast cancer40, ~100 loci explain ~33% of the familial relative risk of prostate cancer43 and ~20 loci 
explain ~30% of Alzheimer disease heritability22. Concurrently, public interest in commercial genetic services has grown 
rapidly. In November 2017, during the first days of the start of the uS Christmas shopping season (from ‘Black Friday’ to 
‘Cyber monday’), AncestryDNA reported the sale of 1.5 million genetic testing kits99. While exact figures are not available, 
to date, at least 12 million individuals have been genetically profiled, mostly via AncestryDNA and 23andme — albeit 
through genealogical services that do not return common disease risk estimates100. meanwhile, perceptions of the utility 
of GWAS-based polygenic risk profiling seem to be largely unchanged.
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realistic and practical goal is the identification of a subset 
of individuals at elevated risk of disease on the basis of 
genetic factors in combination with clinical risk factors. 
We return to our BRCA1 and BRCA2 testing example to 
illustrate this difference. We do not expect BRCA1 and 
BRCA2 testing to comprehensively stratify all women 
by their total genetic susceptibility for breast cancer, 
nor do we expect BRCA1 and BRCA2 testing to iden-
tify the complete set of women at elevated genetic risk 
of breast cancer. Rather, we expect BRCA1 and BRCA2 
testing to identify a subset of women at high risk, know-
ing that some women that test negative for BRCA1 
or BRCA2 mutations may be at high genetic risk due 
to other unmeasured genetic factors. And we assume 
that, perhaps more rarely, some BRCA1 or BRCA2 
mutation-positive women are actually at average or low 
genetic risk as a result of other unmeasured protective 
genetic factors.

Similarly, the immediate utility of PRSs should be 
judged on the basis of probabilistic risk conveyed to 
subgroups of individuals who test ‘positive’ for poly-
genic risk. Individual-level PRS values are often used to 
stratify the population into distinct tiers of risk based on 
percentile rank cut-off values (that is, top 1%, top 10%, 
and so on), which results in the assignment of differing 
levels of probabilistic risk to groups of individuals in 
each tier. Note that risk is not precisely defined for each 
individual in each tier, much like risk is not precisely 
defined for each BRCA1 or BRCA2 positive individual. 

The threshold rank to consider a PRS test positive then 
depends on the balance between the level of probabilistic 
disease risk conveyed to individuals at a PRS tier cut-off, 
often in combination with risk conveyed by other clin-
ical risk factors, versus the risks and benefits associated 
with a contemplated intervention (Fig. 1). Generally, as 
described below, the medical community has already 
defined the appropriate threshold of risk versus benefit 
that justifies certain medical interventions — the more 
invasive or risky the intervention, the higher the level of 
absolute risk that must be mitigated by the intervention 
to justify its application.

The utility of polygenic risk scores
We can roughly categorize PRS utility based on three 
major classes of interventions: PRS-informed therapeutic 
intervention (the part that PRS can play in the selection of 
interventions to treat or prevent disease); PRS-informed 
disease screening (the role that PRS can have in the deci-
sion to initiate and the interpretation of disease screens); 
and PRS-informed life planning (the personal utility 
that PRSs can provide, even in the absence of preven-
tive actions). The utility of PRSs depends heavily on a 
fairly complex interplay between disease-specific and 
intervention-specific risks and benefits, making gener-
alization difficult. Thus, we return to our examples of the 
leading heritable causes of death in the developed world 
to review the evidence supporting the role of PRSs in 
each of these  intervention categories (Fig. 3).

Very high risk

Model A ≈ model B

Invasive
prevention

High risk
Accelerate
noninvasive
prevention

Average risk Standard
prevention

Low risk

Diseased

Healthy
Delay noninvasive
prevention

Model BModel A Risk predictionRisk
stratification

Fig. 2 | Contrasting risk stratification versus risk prediction. A visual depiction of the difference between the utility of 
risk information for population-level risk stratification (ordering individuals by risk) and prediction of individual-level and 
group-level disease susceptibility (absolute risk of disease). Two hypothetical models (A and B) are depicted in the middle, 
where the absolute vertical positioning of the human figures corresponds to the probability that an individual has or will 
acquire a disease. When comparing the two models, the relative distribution of diseased individuals (black) versus healthy 
individuals (blue) is approximately equivalent, that is, the vertical positioning of the black figure relative to the blue figures 
in each model is similar, which would result in receiver operator characteristic curves with approximately equivalent area 
under the curve values. However, the absolute vertical positioning of all figures, especially the highest-risk black figure, 
differs substantially between the two models, leading to different conclusions in the utility of each model, as depicted on 
the right-hand side of the figure. Specific high-risk and low-risk disease probability thresholds would differ on a 
disease-by-disease basis based on the risk of disease versus risk–benefit balance of the intervention. Note that in this 
hypothetical example, changing disease probabilities for the individuals at the extremes of the distribution does not 
influence area under the curve measures substantially but results in risk estimates with differing utility implications.
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PRS-informed therapeutic intervention. Individualized 
management of disease is central to the philosophy of 
precision medicine, with genetic factors often invoked 
for this strategy to personalize health care56. The 
potential utility of PRSs in prioritizing therapeutic 
interventions is exemplified by recent studies relating 
coronary artery disease PRSs to the prophylactic use 
of cholesterol-lowering therapies. According to the US 
Preventive Services Task Force, current guidelines for the 
prevention of a first heart attack (primary prevention) 
recommend the initiation of low-dose to moderate-dose 
statins in individuals between the ages of 40 and 75 years 
of age who have at least one risk factor for an adverse 
cardiovascular event (obesity, diabetes mellitus, high 
blood pressure or smoking) and a >10% 10-year absolute 
risk of an adverse cardiac event, or a 7.5–10% 10-year 
absolute risk of an adverse cardiac event in which case 
the ultimate decision is made by considering the poten-
tial harms versus benefits of statin therapy57. However, 
the initiation of statins is not without controversy. For 
primary prevention of heart attack, fewer than 2 out of 
100 individuals taking statins for 5 years avoid a heart 
attack or stroke, whereas 1 in 100 develops diabetes 
mellitus as a result of the therapy58,59. Other professional 

societies have recommended alternative guidelines60,61, 
all of which incorporate some form of clinical risk calcu-
lation, which is known to overestimate absolute risk62,63. 
This uncertainty necessitates individualization of the 
choice to initiate a lifetime of statin therapy — uncer-
tainty that has been shown to be partially addressed by 
the use of a coronary artery disease PRS.

Although coronary artery disease PRS does not sub-
stantially improve the overall stratification of heart attack 
risk across the entire general population, when combined 
with clinical risk estimates, a PRS may modify the esti-
mated risk of some individuals so that their combined 
risk is at or above the level of risk recommended for the 
initiation of statin therapy (Fig. 1). To this end, numer-
ous studies have shown that coronary artery disease 
PRSs are useful, independent of family history, for the 
identification of some high-risk individuals who receive 
greater benefit from the initiation of statin therapy1,64–68. 
Mega et al.64 and Natarajan et al.1 showed that patients 
within the highest quintile of genetic risk of coronary 
artery disease are at an ~30% increased risk (hazard 
ratio) of an adverse coronary event; upon initiation of 
statin therapy for primary prevention, these individuals 
achieve an ~45% relative risk reduction of the 10-year 

High risk

Average risk

Low risk

Top 20%

Bottom 20%

Middle 60%

Fig. 3 | Risks and benefits by polygenic risk score tier. The number of individuals treated or screened relative to the 
number of individuals receiving a benefit from the intervention is broken down by polygenic risk score (PRS) tier (top 
quintile, middle three quintiles (from the 20th to the 80th percentile) and bottom quintile of genetic risk). The underlying 
data are derived from ReF.64 for coronary artery disease (left — number needed to treat with statins to prevent a heart 
attack), ReF.2 for breast cancer (middle — number of women screened to detect incident breast cancer) and ReF.3 for 
prostate cancer (right — positive predictive value of prostate-specific antigen (PSA) testing). Blue figures are healthy 
individuals. Black figures are unhealthy individuals.
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risk of a heart attack or coronary artery disease related 
death. The outcome differs for individuals of intermedi-
ate polygenic risk (60% of individuals within the second 
to fourth quintiles of risk) who achieve ~25% relative 
risk reduction, whereas individuals in the lowest quin-
tile of genetic risk show no or little statistical benefit1,64. 
Similarly, Tikkanen et al.67 and Ripatti et al.68 showed 
that a coronary artery disease PRS led to the reclassifi-
cation of ~12% of individuals from an overall interme-
diate risk category into a high-risk category, translating 
into a stronger statin use recommendation. Moreover, 
when presented with their genetic risk of coronary artery 
disease, individuals with higher genetic risk were more 
likely to initiate and adhere to statin therapy69,70. Finally, 
the emerging literature suggests a genome-wide PRS 
identifies the top 2.5% of individuals who are at a 400% 
increased risk, equivalent to the adverse coronary event 
risk associated with familial hypercholesterolaemia, 
which would lead to a recommendation of aggressive 
cholesterol-lowering therapy71.

PRS-informed disease screening. Findings have also 
demonstrated the utility of PRSs in the decision to ini-
tiate and the interpretation of disease screening in can-
cer. Current guidelines, as stated by the US Preventive 
Services Task Force, recommend the initiation of bien-
nial screening mammography for women at 50 years 
of age, with consideration of individual risk factors  
for the decision to start screening mammography 
between the ages of 40 and 49 years72. This age-based 
criterion was defined by the balance between the aver-
age risk of breast cancer at various age thresholds and 
the risk of harms due to false-positive mammography 
results. Based on this risk-to-benefit threshold, a breast 
cancer PRS, in conjunction with known clinical risk fac-
tors, was shown to identify 16% of the population who 
could make an informed decision to start screening at 
40 years of age, given that their risk exceeded that of 
an average 50-year-old2,73. Alternatively, 32% of the pop-
ulation could delay screening, as their risk at 50 years 
of age was lower than that of an average 40-year-old2. 
Similar results have been shown in colorectal cancer, in 
which a PRS would lead to a recommendation to initiate 
colonoscopy screening at 42 years for individuals in the  
highest PRS decile versus 52 years for individuals in  
the lowest PRS decile74.

PRSs can also aid in the interpretation of screen-
ing tests with high false-positive rates, with prostate 
cancer screening being the most infamous. The US 
Preventive Services Task Force recommends against 
prostate-specific antigen (PSA) screening as the harms 
owing to false positives and overtreatment of benign 
disease outweigh the benefits75. This recommendation 
is complicated by the fact that prostate cancer is fairly 
common, occurring in one in nine men during their 
lifetime. However, death from aggressive disease is 
uncommon, occurring in ~1% of men diagnosed with 
prostate cancer. Despite the fact that most prostate can-
cer is benign, prostate cancer remains the second highest 
cause of cancer death in men, and even initially detected 
low-risk disease often evolves to require treatment76.  
A prostate cancer PRS has been shown to help identify 

men at significantly elevated risk of disease who attain 
much greater risk-to-benefit balance from PSA test-
ing3,77. Specifically, the positive predictive value for the 
detection of aggressive prostate cancer via PSA testing 
is ~25% for individuals in the top 5% of genetic risk ver-
sus ~12.5% in the general population. Individuals with 
PRS scores in the top 50% account for 76% of aggressive 
prostate cancer, with the top 20% of individuals account-
ing for 42% of all cases of aggressive prostate cancer3. 
Importantly, the prostate cancer PRS is not specific to 
aggressive disease, and thus its use to prioritize PSA 
screening addresses only the problem of false-positive 
PSA tests and not the overtreatment of benign disease78. 
Active surveillance programmes using additional clinical 
risk factors and balancing against competing health risks 
of the individual may help determine whether treatment 
is necessary79. Thus, a PRS could potentially prioritize 
screening for a subgroup of men at high risk of pros-
tate cancer, with appropriate counselling regarding the 
action taken following a positive test.

PRS-informed life planning. Finally, PRSs may have 
utility even in the absence of, or personal desire to avoid, 
preventive screening and therapeutic interventions. For 
coronary artery disease, individuals in the top quintile of 
genetic risk have the ability to offset much of this risk by 
maintaining optimal lifestyle habits, which reduces their 
overall risk of disease by nearly half5. For breast cancer, 
if healthy lifestyle choices were preferentially targeted to 
and employed by women in the top decile of genetic risk, 
an estimated ~20% of all preventable breast cancer cases 
would be avoided2. Theoretically, clarifying a high-risk 
individual's perception of their susceptibility to disease 
and quantifying the benefits of healthy behaviours would 
be one among many effective tools for inducing and 
maintaining behaviour change80. Alzheimer disease pro-
vides a more interesting use case, as there is some debate 
about whether lifestyle choices can mitigate Alzheimer 
disease onset. A PRS for Alzheimer disease was recently 
shown to be able to dramatically stratify individuals by 
average age of disease onset4. Those individuals with a 
PRS in the top quartile had an average age of disease 
onset of 75 years versus 95 years for those in the lowest 
quartile. Alzheimer disease is influenced by one strong 
genetic risk factor, APOE status. Yet, even when the 
effect of this factor was removed by limiting the anal-
ysis to individuals homozygous for the APOE-ε3 allele, 
the difference in average age of disease onset was still 
10 years in the top versus bottom decile of genetic risk4. 
Although the adoption of healthy behaviours might not 
influence Alzheimer disease risk, this information could 
inform financial, legal and care planning.

Perspectives
Barriers and caveats to PRS utility. PRS-based genetic 
risk estimates are beginning to show promise in their abil-
ity to identify subgroups of individuals who may benefit 
from the prioritization of preventive actions. However, 
there remain a number of scientific, clinical and social 
hurdles to bring PRSs into practice81. While we have 
compared the utility of high-risk variants to cumulative 
polygenic risk estimation, it is likely that there is greater 
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uncertainty in the risk estimates at the individual level 
among high-risk individuals identified by a polygenic 
versus familial disease genetic test. A major component of  
this uncertainty is a result of the fact that interrogation 
of high-risk variants typically involves identification of a 
directly causal variant, whereas polygenic risk estimates 
may incorporate variants that are not perfectly correlated 
with the causal genetic factor or factors. This results in 
some uncertainty in the estimation of the effect size asso-
ciated with each individual variant integrated into a PRS 
and reduces the generalizability of PRS risk estimates in 
populations beyond the population studied. This issue is 
most pronounced in the transferability of risk estimates 
from European ancestry populations, the population in 
which most GWAS have been executed, to African ances-
try populations82. Thus, inequities in access to useful 
genetic risk estimates are of major concern.

It is tempting to invoke missing heritability, the 
unknown component of genetic risk, as another source 
of uncertainty specific to polygenic risk estimates. 
However, this argument relies on what seems to be a 
false dichotomy between deterministic familial disease 
variants and probabilistic polygenic risk. In fact, recent 
evidence suggests that familial risk is both probabilistic 
and modified by polygenic risk19. For example, absolute 
risk of breast cancer in BRCA1 or BRCA2 mutation car-
riers is markedly influenced by known polygenic risk 
factors, with effect sizes that are consistent with but 
slightly smaller in BRCA1 or BRCA2 mutation carriers 
and noncarriers7. The cumulative influence of known 
polygenic risk factors sufficiently modifies total absolute 
risk levels in BRCA1 and BRCA2 mutation carriers so as 
to change mammography screening recommendations. 
For example, BRCA1 carriers in the lowest versus highest 
PRS decile for breast cancer risk have been shown to have 
a 21% versus 39% absolute risk of developing breast can-
cer by age 50 years and a 56% versus 75% risk of devel-
oping breast cancer by age 80 years7. Similarly, prostate 
cancer risk by 80 years of age varies from 7% to 26% for 
BRCA1 carriers and from 19% to 61% for BRCA2 car-
riers in the 5th and 95th percentile of a prostate cancer 
PRS, respectively8. Moreover, there are known polygenic 
factors not associated with polygenic risk of disease that 
specifically modify risk in BRCA1 and BRCA2 mutation 
carriers83,84. Similarly, polygenic risk strongly modifies 
the risk of heart attack in individuals with familial hyper-
cholesterlaemia6. Thus, the level of uncertainty in esti-
mated risk owing to unmeasured genetic factors may be 
no greater for high-risk individuals identified via meas-
ured high-risk variants or polygenic factors. The total 
absolute risk conferred to high-risk individuals identi-
fied by high-risk variants may be substantially greater 
than that conferred by polygenic factors; however, this 
simply translates into different recommendations that 
can be made to these individuals based on the balance 
of risk versus benefit of the available interventions. 
Nevertheless, it should be noted that there may be dif-
ferences in disease presentation, severity and available 
therapeutic interventions for disease for familial versus 
polygenic genetic susceptibility7,85.

Other barriers to PRS utility include physician 
and public education regarding the interpretation of 

polygenic risk, especially in the understanding of various 
and dynamic risk metrics. A recent trend of unsupported 
genetic tests for athletic ability, dietary recommendations 
and others may be difficult for non-experts to differenti-
ate from the validated approaches presented above. For 
those tests with utility, physician and public opinion may 
be negatively biased owing to early commercialization 
efforts. This lack of trust could bias the manner in which 
PRSs are utilized. For example, to improve both the effi-
cacy and efficiency of clinical practice via the use of 
PRSs, individuals of low polygenic and clinical risk and 
their physicians would potentially need to delay screen-
ing or decide against therapeutic intervention, which 
is likely a more challenging recommendation to adopt 
than the decision to accelerate screening and therapeutic 
intervention owing to elevated overall risk. Moreover, 
strategies to effectively communicate risk information to 
physicians and individuals must be developed and per-
haps customized to different target audiences, especially 
when the intention is to drive the uptake of preventive 
behaviours. Unwanted psychosocial impact of PRS 
information in the form of anxiety, fatalistic thinking 
or the adoption of a false sense of security must be con-
sidered as part of this communication strategy. These 
concerns have been demonstrated to be minor86–88, 
although PRS results may become more alarming as 
models continue to improve to the point where they 
are able to convey substantially greater levels of risk. As 
PRS estimates continue to improve, stronger protections 
against genetic discrimination are needed to encourage 
the adoption of this approach. Finally, large-scale pro-
spective studies examining the clinical utility of PRSs 
should be conducted.

Future directions. The utility of PRS risk estimation is 
currently limited by its simplicity. A number of research 
directions can be considered for future development to 
improve their comprehensiveness, to reduce or com-
municate uncertainty and to improve generalizability. 
For risk communication, it would be useful to develop 
methods to convey the uncertainty associated with 
genetic risk estimates at an individual level, especially 
a method that incorporates uncertainty resulting from 
measured as well as unmeasured factors. For exam-
ple, statistical models17 could be used to project the 
expected allele frequency and effect size of yet to be 
identified GWAS loci to estimate the distribution of 
the future genetic risk estimate of an individual via 
PRSs that include these currently unmeasured fac-
tors. Importantly, we expect the risk of reclassification 
owing to future genetic findings to be modest, espe-
cially given the paucity of low-frequency risk variants 
with moderate or larger effects. For individual-level 
decision-making, quantifying this uncertainty would 
be an important component to consider. To improve 
comprehensiveness and reduce uncertainty, risk esti-
mates that integrate familial risk and polygenic risk 
estimates are needed. This would help alleviate some, 
but not all, concerns associated with the false sense of 
security that may be conveyed by a negative familial risk 
or polygenic test and would be an improvement to both 
familial risk and polygenic genetic testing modalities. 
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Comprehensiveness could also be improved by using 
whole-genome prediction models rather than those 
limited to GWAS-significant variants, although this 
would lead to further concerns regarding generaliza-
bility. Ultimately, more dynamic methods to estimate 
effects associated with individual genetic variants given 
the genetic, demographic and clinical risk factor back-
ground of the individual should be developed. One 
solution could be the development of multiple models 
per disease to fit various use cases—even when meas-
uring risk of the same event in different circumstances. 
For example, the balance in the prognostic value of 
demographic, lifestyle and clinical risk factors shifts 
throughout the lifespan and should be accounted for. 
Finally, given the advances in machine learning and 

artificial intelligence, extensions to PRS models via 
these technologies may be a more practical solution to 
addressing the shifting influence of genetic factors and 
their interaction with other prognostic factors, although 
the use of these technologies for genetic risk predic-
tion is associated with its own issues, including the 
size of the large-scale data sets required to effectively 
train these models and the difficulties in interpreting 
black box solutions. Ultimately, we believe that both 
our accumulated knowledge and the explosive growth 
in public interest have brought us to a tipping point 
where large-scale studies demonstrating the utility of 
polygenic risk estimation should be pursued.
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